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An emerging link between cytoskeletal dynamics and cell
adhesion molecules in growth cone guidance
Daniel M Suter∗ and Paul Forscher†

It has become increasingly evident that growth cone guidance
depends on the concerted actions of cytoskeletal proteins,
molecular motors and cell adhesion molecules. Recent
studies suggest that modulation of coupling between
extracellular substrates and intracellular cytoskeletal networks
via cell surface receptors is an important mechanism for
regulating directed neuronal growth.
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Abbreviations
ADF actin depolymerizing factor
apCAM Aplysia CAM
Arp actin-related protein
BDM 2,3-butanedione-2-monoxime
CALI chromophore-assisted laser inactivation
CAM cell adhesion molecule
EGF epidermal growth factor
F-actin filamentous actin
FGF fibroblast growth factor
Ig immunoglobulin
Ig CAM immunoglobulin superfamily CAM
IP3 inositol trisphosphate
MAP microtubule-associated protein
NCAM neural CAM
NEM N-ethyl maleimide
N-WASP neural homologue of WASP
PIP2 phosphatidyl inositol biphosphate
PLCγ phospholipase Cγ
SH Src homology domain
VASP vasodilator-stimulated phosphoprotein
WASP Wiskott–Aldrich syndrome protein

Introduction
The neuronal growth cone is a highly motile structure
at the tip of growing axons. It may be viewed as
a sophisticated signal transduction device, capable of
recognizing extracellular guidance signals and translating
them into directed neurite growth. Over the past fifteen
years, an increasing number of guidance molecules
have been identified that can be categorized as either
short- or long-range cues that are either attractive or
repulsive [1,2•]. The integration of these four fundamental
guidance properties results in classic forms of growth cone
behavior such as advance, turning, withdrawal, and target
recognition.

Significant cytoskeletal rearrangements occur during growth
cone guidance [3]. The two major cytoskeletal components
of neuronal growth cones are filamentous actin (F-actin),
which is located predominantly in the peripheral cyto-
plasmic domain, and microtubules, which are distributed
in the central cytoplasmic domain (Figure 1a). Although
growth cones vary considerably in their morphology
depending on the growth substrate [4], neuronal cell type
and age, this relatively distinct spatial segregation of actin
filaments and microtubules has been observed in most
growth cones studied to date. Our understanding of the
cytoskeletal basis of growth cone motility has increased
significantly in recent years and, in a similar vein, the
morphogenic effects of neuronal guidance and signaling
molecules have been described in great detail. However,
how guidance cue information is transduced into the
dynamic changes in cytoskeletal structure that underlie
guidance responses has remained elusive. This review
focuses on studies that begin to address this gap in our
knowledge of growth cone motility and guidance.

Actomyosin-based growth cone motility
Ultrastructural studies reveal at least two distinct F-actin
populations in the peripheral domain of growth cones:
crosslinked networks in lamellipodial domains and bun-
dles of parallel actin filament arrays that often span the
width of the lamellipodia and extend into filopodia (Fig-
ure 1a) [5]. The latter population is highly oriented, with
about 90% of the filaments displaying plus (barbed)-end
distal polarity.

Motility in the growth cone peripheral domain is based
on actomyosin and is characterized by three different
processes: first, assembly of filaments at the leading edge;
second, constant retrograde flow of F-actin networks;
and third, proximal recycling of F-actin in a transition
zone between the peripheral and central cytoplasmic
domains in which microtubules and actin filaments overlap
(Figure 1b) [6,7]. The above three kinetic processes have
been observed in the lamellipodia of most motile cells,
and regulation of each process could affect the rate of cell
movement, as considered below [8•].

Assembly at the leading edge
F-actin assembly at the leading edge (Figure 1a[ii])
probably results from a combination of nucleation, poly-
merization, and annealing of short filaments. These
processes are thought to be regulated by monomer-binding
proteins (such as profilin and thymosin β4 [9]), barbed-end
capping proteins, and proteins that regulate polymeriza-
tion, such as the actin-related protein 2/3 (Arp2/3) complex
[10••], vasodilator-stimulated phosphoprotein (VASP) [11],
and Mena [12••]. It is interesting that many of these
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Cytoskeletal organization and actin dynamics in growth cones. (a) Distribution of the two major cytoskeletal components in neurites and growth
cones. [i] Microtubules are localized in the neurite and the central domain of the growth cone, whereas actin filaments are distributed in the
peripheral domain. [ii] Blowup of [i] showing the organization of actin filaments in more detail [5]. Filopodia contain bundles of filaments with
their plus (barbed) ends oriented towards the leading edge. These bundles can span the whole width of the lamellipodium. A second population
of actin filaments form less polarized networks in lamellipodia. Plus (barbed)-end assembly occurs at the leading edge and at the tips of filopodia
and is probably regulated by monomer-binding proteins (such as profilin) and by nucleation factors (such as the Arp2/3 complex). (b) Cross
section of a growth cone demonstrating the dynamic processes involved in actin-based growth cone motility. Retrograde F-actin flow is indicated
by a marker (e.g. flow-coupled bead). (a)[iii] Retrograde translocation of actin filaments is driven by myosin motors that may be in the transition
zone. Labels A–C depict possible actomyosin combinations for tension generation: double-headed myosin II (A) and single-headed myosin I (B
and C) subtypes are shown. The tension meter indicates low tension if actin networks are not stabilized by substrate interactions (compare with
Figure 2). (a)[iii] Filament recycling occurs by action of putative severing proteins in the transition zone (such as gelsolin) and/or factors such as
ADF/cofilin.

proteins have been implicated in the actin-based motility
of intracellular pathogens such as Listeria monocytogenes
[10••,11,12••] and Shigella flexneri [13]. These bacteria

commandeer the host cell’s actin assembly machinery as
a means of intracellular propulsion and cell-to-cell spread,
generating actin-tail-like structures behind them as they
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move. It is important to note that similar actin structures,
described as ‘inductopodia’, have been observed in Aplysia
growth cones when either polycationic beads [14] or
beads coated with antibodies to the Aplysia cell adhesion
molecule apCAM [15•] were placed onto the lamellipodia.
Such beads move on the growth cone surface without
any preferential orientation, by a process driven by actin
assembly and independent of retrograde F-actin flow [14].

Evidence suggests that formation of an F-actin tail and
growth of a filopodium and/or lamellipodium appear to
involve similar molecular scenarios. For example, the
Arp2/3 complex was found to be sufficient for actin
polymerization in Listeria motility [10••]; in addition, it
was localized to lamellipodia of stationary and migrating
fibroblasts, suggesting a potential role in coordinating
F-actin assembly at the leading edge [16]. Finally,
Gertler et al. [12••] implicated Mena, a murine relative
of Drosophila Enabled and VASP, in the regulation
of microfilament dynamics. Both Mena and VASP are
believed to recruit profilin via proline-rich domains to the
surface of Listeria [11,12••] and thereby promote actin
assembly [9]. In support of a connection between bacterial
F-actin tail and lamellipodia formation, expression of a
neuronal isoform of Mena in fibroblasts resulted in the
formation of actin-rich protrusions [12••]. Thus, studying
the motility of invasive bacteria has given us important
clues regarding the molecular basis of normal actin-based
motility processes. It will be of considerable interest
to investigate potential roles for these actin-regulatory
proteins in growth cones and other neuronal processes that
involve changes in actin structure.

Retrograde flow
In growth cones as well as other motile cells, F-actin
filaments and networks can translocate from the leading
edge towards the central cytoplasmic domain by a process
called retrograde F-actin flow (Figure 1b) [3,7,17]. Lin et
al. [18••] have recently shown that retrograde F-actin flow
in Aplysia bag cell growth cones is driven by the action
of myosin motors (Figure 1a[iii],b). Myosin inhibition
either by injection of N-ethyl maleimide (NEM)-in-
activated myosin S1 fragments or by cell treatment
with 2,3-butanedione-2-monoxime (BDM), an inhibitor of
myosin ATPase, results in a slowing of retrograde F-actin
flow accompanied by protrusive growth of filopodia.
This growth can be blocked by inhibition of actin
polymerization using cytochalasin B, showing that it is
attributable to continued actin assembly in the presence of
the myosin inhibitors. These results suggest that leading
edge growth could be achieved by either increasing the
rate of actin assembly or decreasing the rate of retrograde
F-actin translocation (flow), and that actin assembly and
translocation are independent molecular processes.

The myosin subtype(s) driving retrograde flow remain
to be elucidated; potential candidates are conventional
myosin II and the unconventional myosins I and V,

because these motors have been localized in growth
cones (discussed in a recent review by Hasson and
Mooseker [19]). The specific localization of myosins
driving retrograde F-actin flow in growth cones has not
yet been determined. In principle, a conventional or
unconventional myosin motor attached to actin filaments,
to other cytoskeletal structures such as microtubules
or to the membrane cytoskeleton could be involved
(Figure 1a[iii] labels A–C). Although it is currently
not clear to what extent different myosins contribute
to growth cone motility, it is generally accepted that
actomyosin networks are involved in the generation of
tension between the growth cone and neurite shaft, and
that tension is related to rates of growth [20] (Figure 1b),
as discussed further below.

Proximal recycling
If a steady-state retrograde filament flux is to be main-
tained, actin filaments also have to be recycled in the
transition zone (Figure 1a[iii]). This could be achieved by
severing and/or depolymerization, mediated by filament-
severing proteins such as gelsolin or by proteins of
the ADF (actin depolymerizing factor)/cofilin family,
respectively. It is of interest that growth cones obtained
from gelsolin null mice are similar in size to cones from
wild-type mice; in contrast, the number of filopodia
per growth cone is higher in the gelsolin null mice,
apparently as a result of delayed filopodial retraction [21].
Impaired F-actin severing at the base of filopodia could
account for the delayed retraction rates observed. Cofilin
is essential for actin filament turnover in yeast [22•],
and ADF/cofilin (but not gelsolin) action is necessary for
actin filament recycling in F-actin tail structures assembled
by Listeria [23]. In addition to gelsolin and cofilin,
N-WASP, a neural homologue of WASP (Wiskott–Aldrich
syndrome protein), could contribute to actin recycling.
This novel actin-depolymerizing and PIP2-binding protein
has recently been identified in brain and implicated in
signal transduction between the epidermal growth factor
(EGF) receptor and the actin cytoskeleton [24•]. Given
the surprisingly normal phenotype of the gelsolin knockout
mouse growth cone [21], it will be of interest to examine
a potential role for ADF/cofilin and N-WASP in growth
cone motility. Finally, as the rate of actin filament recycling
may affect the location of the recycling (i.e. the transition
zone) (Figure 1), recycling rates could also affect distal
microtubule ends, as discussed below.

Growth cone guidance and the interactions
between microtubules and actin filaments
Microtubules are the prominent cytoskeletal component
in the neurite shaft and the central domain of the
growth cone (Figure 1). Microtubules provide structural
support and act as substrates for fast axonal transport of
organelles. The mechanism by which microtubule arrays
in the growing axon are established (i.e. the polymer
versus the subunit transport model) is still controversial
and has recently been discussed extensively elsewhere
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Cytoskeletal rearrangements during interactions between the growth cone and its target. (a) The top view shows microtubule reorientation
toward an attractive target after initial contact with filopodia and/or lamellipodia. Microtubule extension occurs specifically in a corridor of F-actin
flow attenuation [35]. (b) Timecourse cross section demonstrates a mechanism for growth cone advance by substrate–cytoskeletal coupling
[7,17]. Before target interaction there is maximal retrograde flow, no substrate coupling and little advance (Time 0 to Time 1). If the growth
cone encounters a favorable target substrate (Time 2), molecular clutch complexes (including receptors and linkage proteins) form, linking the
substrate to the actin cytoskeleton. Stabilization of peripheral actin leads to attenuation of retrograde flow and increased tension between central
and peripheral domains (Time 3). Advance occurs by a combination of increased tension on the central domain and continued leading-edge
actin assembly. See text for consideration of possible mechanisms of microtubule extension.

[25,26]. Microtubules entering the central growth cone
domain splay out (Figure 2a) and continuously extend
into and retract from the actin-rich peripheral domain [27].
This probably occurs by stochastic bouts of microtubule
assembly and disassembly, a process referred to as
dynamic instability, and/or by microtubule sliding, which is
potentially mediated by the action of microtubule motors
[7,20]. Pharmacological studies using low concentrations of
vinblastine or nocodazole, which inhibit dynamic instabil-
ity without causing marked microtubule loss, revealed that
axonal advance depends on dynamic microtubule ends
[28,29•]. The dynamic properties of microtubules may
be regulated, at least in part, by microtubule-associated
proteins (MAPs) [20].

A number of in vivo and in vitro studies in the past few
years (reviewed in [3]) indicate that rapid rearrangement
of the actin and microtubule cytoskeleton occurs when
growth cones respond to attractive extracellular guidance
cues. To summarize, during interactions between the
growth-cone and its target, microtubules reorient and
extend towards interaction sites, and F-actin tends to
accumulate distal to microtubule ends [3] (Figure 2). More
recently, similar cytoskeletal rearrangements have been
observed in growth cones turning at substrate boundaries
to avoid less favorable or inhibitory substrates [30–33].

Actin filaments appear to play a role in guiding mi-
crotubules during axonal steering [3,31,34]. Analysis of
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retrograde F-actin flow during Aplysia growth cone–target
interactions revealed an inverse relationship between rates
of central domain extension and retrograde flow [35].
Microtubules were observed to preferentially extend in
a corridor defining the target interaction axis in which
retrograde flow was attenuated (Figure 2a). What could
be the mechanism of such microtubule extension? We will
discuss three possibilities; for two of them, development
of tension in actomyosin networks, as a result of adhesive
interactions with the underlying substrate, appears to be
an essential ingredient [20].

One scenario involves myosin as a molecular linker
between microtubules in the central domain and actin
filaments in the transition zone (Figure 1a[iii] label C).
Myosin interactions with polarized actin filaments would
generate tension if distal regions of the peripheral domain
were restrained by adhesions to the target substrate
(Figure 2b). Such tension would tend to pull the central
domain forward toward sites of target interactions. The
microtubule-associated protein 2c (MAP2c) is a potential
candidate for meditating actin–microtubule interactions
[36]. A second possibility for generation of tension
involves localized contraction of actomyosin filament
networks in the transition zone (Figures 1a[iii] and 2b).
A recent detailed analysis of the actin–myosin II system
in fish keratocytes strongly supports such a dynamic
network contraction model for cell body translocation
[37••] — preliminary observations suggest a similar mech-
anism may be at work in growth cones as well (DM Suter,
P Forscher, unpublished observations).

Microtubule extension might also be promoted by a mech-
anism not directly related to tension. Specifically, if actin
filament recycling continues during target interactions that
involve F-actin flow attenuation, forward displacement of
the recycling zone should occur. This would result in
progressive clearance of F-actin distal to microtubule ends.
This effect in itself might promote microtubule advance,
as it has been shown that microtubules tend to advance
into growth cone regions in which F-actin has been
depleted [6]. Furthermore, a recent elegant study using
photoactivation of microtubule fluorescence in migrating
newt lung cells has shown that microtubules protruding
into F-actin-rich lamellipodia are actually in a steady
state in which forward microtubule growth is matched
by the rate of retrograde microtubule transport [38••].
Significantly, retrograde microtubule transport occurs as
a result of association with actin filaments undergoing
retrograde flow. It was also found that plus-end micro-
tubule growth is inhibited by the presence of retrograde
F-actin flow, suggesting that physiological processes that
attenuate retrograde F-actin flow will tend to promote
microtubule growth — exactly what was found during
growth-cone–target interactions [35].

To summarize, when a growth cone turns towards an
attractive substrate (Figure 2), cell surface receptors

binding to the target substrate appear to make functional
linkages with the underlying actin cytoskeleton, stabilizing
it, and thereby attenuating retrograde flow. Stabilization
(anchoring) of distal actin networks generates tension
between central and peripheral domains, which promotes
microtubule extension and also protrusive leading edge
growth (Figure 2) [3,7,17]. Thus, growth cones may
utilize cell adhesion molecules (CAMs) and associated
cytoskeletal binding proteins, such as a ‘molecular clutch’,
to mediate substrate–cytoskeletal coupling and thereby
regulate rate and direction of growth (Figure 2b).

Recent studies from our laboratory on an immunoglobulin
superfamily cell adhesion molecule (Ig CAM) support this
molecular clutch model. As mentioned above, apCAM, the
Aplysia homologue of vertebrate NCAM (neural CAM),
associates in different ways with the actin cytoskeleton
as a function of crosslinking density [15•] and can
trigger actin assembly when crosslinked by unrestrained
antibody-coated beads.

In very recent studies, we found that physical restraint
of beads coated with either apCAM antibody or purified
protein resulted in growth cone steering events, tension
development and cytoskeletal reorganization [39•]. These
steering events elicited by restrained beads were similar to
those observed during native growth cone target interac-
tions [34]. Importantly, once again retrograde F-actin flow
was attenuated exclusively in the bead interaction axis
where microtubule advance occurred (Figure 2).

Interactions between cell adhesion molecules
and the cytoskeleton
How well do the properties of known CAMs fit into
this substrate–cytoskeletal coupling model of growth cone
motility? Over the past years, an increasing number of
ligands and receptors belonging to different structural
families have been implicated as axon guidance molecules
[1,2•]. For all of the major cell adhesion receptor
families (Ig superfamily CAMs, integrins and cadherins),
proteins that could interact with both the cytoplasmic
domain of the receptors and the actin cytoskeleton have
been identified [40]. However, our understanding of the
function of such linkage proteins in growth cone guidance
is limited.

Probably the best characterized cell surface receptors with
respect to signaling and cytoskeletal linkage are the inte-
grins. The molecular composition of integrin/cytoskeletal
complexes has been analyzed mostly in focal adhesion
complexes, which are formed by many cells in culture
in response to extracellular matrix proteins [41]. Such
focal adhesions consist of aggregated integrin receptors
that link extracellular matrix components to actin stress
fibers and contain a large number of structural proteins
(such as talin and vinculin), as well as signal transduction
proteins (such focal adhesion kinase [FAK], RhoA and src)
[41]. It is reasonable to assume that analogous structures
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exist in growth cones. In support of this assumption,
it was demonstrated that sensory growth cones plated
on fibronectin but not laminin substrates form adhesions
resembling focal contacts [42]. Additional distinct effects
of these two substrata on the rate of growth cone advance
have been found when laminin- or fibronectin-coated
beads were presented to growth cones [43].

To address the function of the focal adhesion proteins talin
and vinculin in growth cones, Sydor et al. [44] recently
used microscale chromophore-assisted laser inactivation
(CALI). Local inactivation of talin resulted in cessation
of both filopodial extension and retraction, whereas
inactivation of vinculin caused bending and buckling of
filopodia, suggesting that these actin-associated proteins
play distinct roles in filopodial motility. As CALI results
in only short-term loss of protein function, overall neu-
rite outgrowth rates were unaffected; however, reduced
long-term rates of neurite extension were observed in a
preceding study in which vinculin-deficient PC12 cells
were generated by antisense methods [45].

It is well established that catenins link cadherins to the
actin cytoskeleton [40]. β-catenin and γ-catenin bind to the
cytoplasmic domain of cadherin, as well as to α-catenin,
which, in turn, is thought to link the cadherin/catenin
complex to the actin cytoskeleton. Recently, in vivo
expression of a dominant-negative N-cadherin mutant
lacking a large portion of the extracellular domain revealed
that N-cadherin function is necessary for axonal and
dendritic outgrowth from retinal ganglion cells [46].
Interestingly, further experiments reported in this paper
suggest that cadherin/catenin interactions, which are
essential for cell–cell adhesion, are not involved in neurite
outgrowth.

The Ig CAMs are far less well characterized with respect
to cytoskeletal interactions than the integrins or cadherins.
Biochemical studies have implicated spectrin and ankyrin
as possible actin-linkage molecules for NCAM and CAMs
of the L1 family, respectively [47,48]. Interestingly,
cell–cell interactions mediated by homophilic binding
of the Drosophila L1 homologue neuroglian promotes
recruitment of ankyrin to cell contact sites, suggesting that
ankyrin is only associated with clustered L1-like CAMs
[49•]. Very recently, Garver et al. [50••] demonstrated
that tyrosine phosphorylation of the cytoplasmic tail of
neurofascin at a site highly conserved among members
of the L1 family abolished the binding of neurofascin to
ankyrin and resulted in an increased lateral mobility of
neurofascin. These results suggest that the association of
L1-like CAMs with the cytoskeleton via ankyrin may be
regulated through tyrosine phosphorylation in response to
extracellular stimuli.

A key question with respect to growth cones relates
to how linkages between CAMs and moving actin
filament networks might be regulated. Is there a defined

series of events that occurs in growth cones leading
to substrate–cytoskeletal linkage? Can the strength or
stiffness of these linkages be modulated? Some answers
to these interesting questions are suggested by recent
work, mostly in the integrin field. In an extensive study
using fibroblasts, it was demonstrated that 32 cytoskeletal
and signaling molecules can be classified into groups
depending on their ability to form integrin transmembrane
complexes in response to ligand occupancy, integrin ag-
gregation, and tyrosine phosphorylation [51]. In addition,
integrin receptor localization [52] and integrin ligand
binding [53•] have been shown to influence the strength
of receptor–cytoskeletal interactions.

Recently, Choquet et al. [54••] have demonstrated that
cells are able to strengthen integrin–cytoskeletal linkages
in response to extracellularly applied force. The authors
restrained fibronectin and integrin antibody-coated beads
on fibroblasts with a given force using a laser tweezer. In
order to re-trap beads associated with retrograde F-actin
flow, they had to apply at least three times the original
restraining force. The authors concluded that cells are
able to respond to the rigidity of the extracellular matrix,
thereby using the biophysical properties of the matrix, in
addition to its biochemical characteristics, as a guidance
cue. It is interesting to note in this context that the
small GTP-binding protein Rho may play a role in force-
dependent signal transduction events. The Rho family
proteins are known to regulate actin-based structures, such
as stress fibers, lamellipodia and filopodia [55]. In addition,
it has been suggested that Rho regulates contractility
by activating Rho kinase, which, in turn, downregulates
myosin phosphatase [56]. The resulting increased levels
of myosin light-chain phosphorylation promotes both
contractility and focal adhesion formation [41,57•].

Ig CAM signaling
In marked contrast to the relatively sparse information
available regarding proteins that link Ig CAMs to the
actin cytoskeleton in neurons, tremendous progress has
been made in the elucidation of signal transduction
pathways associated with Ig-CAM-mediated neurite out-
growth. The laboratory of Walsh and Doherty (reviewed
in [58•]) has shown in a series of publications that
NCAM, L1, as well as N-cadherin signaling involves
activation of a fibroblast growth factor (FGF) receptor
tyrosine kinase-phospholipase Cγ (PLCγ) cascade that
leads to Ca2+ influx (Figure 3). Saffell et al. [59••] have
recently provided strong evidence that activation of the
FGF receptor is necessary and sufficient to account for
axonal growth mediated by NCAM, L1, and N-cadherin.
Expression of a dominant-negative (kinase-deleted) FGF
receptor in PC12 cells resulted in a complete loss of
neurite outgrowth induced by above CAMs. In addition,
immunoprecipitation experiments revealed that soluble
NCAM and L1 are able to cause phosphorylation of the
FGF receptor in the absence of FGF. Direct binding
studies between the FGF receptor and CAMs would
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Model for a potential crosstalk between CAM signaling and actin regulatory proteins. Evidence suggest that Ig CAMs (NCAM and L1), as well
as N-cadherin, mediate neurite outgrowth by activation of the FGF receptor, which, in turn, activates a PLCγ signaling cascade (for details, see
[58•]). PLCγ hydrolyzes PIP2 to IP3 (which causes release of Ca2+ from intracellular stores) and diacylglycerol (DAG), which is converted to
arachidonic acid (AA). In turn, AA, stimulates Ca2+ influx through Ca2+ channels. PIP2 hydrolysis may release actin regulatory proteins such
as profilin and gelsolin, thereby making these proteins available for increased actin turnover/remodeling. Details of signal transduction between
receptors and Rho proteins in growth cones remain elusive. The open arrow corresponds to protein translocation. EGFR, EGF receptor;
FGFR, FGF receptor.

provide the ultimate support for this interesting new signal
transduction pathway.

Aside from FGF receptor signaling, selective nonreceptor
tyrosine and serine/threonine kinase signaling has been
implicated for both NCAM- and L1-mediated neurite
outgrowth [60–62,63•,64]. It remains to be established
how these signaling molecules are related to the FGF
receptor pathway. These nonreceptor kinases may enrich
the repertoire of Ig CAM responses, as different CAM
substrates induce distinct growth cone morphologies [4].
In addition, the nonreceptor kinases could intracellularly
transduce signals between CAMs and the FGF receptor.
Finally, it has been suggested that these kinases could
mediate ‘inside-out’ signaling [58•], a phenomenon well
established for integrin receptors.

How could CAM signaling pathways affect cytoskele-
tal remodeling? Polyphosphoinositide metabolism could
provide a link (Figure 3). The phospholipid PIP2 is a

well established regulator of actin-binding proteins such
as gelsolin and profilin [65], which are inactivated when
in a PIP2-bound state. CAM/FGF receptor interactions
that activate PLCγ [58•] and lead to PIP2 hydrolysis
could promote release of gelsolin and profilin as well
as generate IP3 and diacylglycerol (DAG). Gelsolin is
a Ca2+-activated severing protein [65], whereas profilin
promotes plus-end actin assembly by desequestering
G-actin from the monomer binding protein, thymosin β4
[9]. Therefore, co-activation of gelsolin and profilin could
promote actin filament turnover, assembly and remodeling
of existing actin structures. In a similar vein, EGF receptor
tyrosine kinase activation of PLCγ results in release of
gelsolin [66•] and profilin [67] from PIP2, thereby regu-
lating cell motility and actin reorganization in fibroblasts
[66•]. Finally, in addition to the PIP2 pathway, there is
genetic evidence for crosstalk between tyrosine kinase
signaling and cytoskeletal regulatory proteins containing
polyproline-rich domains. Specifically, a recent genetic
study has identified an SH2/SH3 adapter protein essential
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for photoreceptor axon guidance and target recognition in
Drosophila [68•].

Rho family GTPases functions in growth
cones
Increasing new evidence suggests that proteins of the
Rho family of small GTP-binding proteins are candidates
for signaling agents linking extracellular guidance cues
and for regulation of the actin cytoskeleton in growth
cones [69]. It was recently found that microinjection of
Cdc42 and Rac1 into neuroblastoma cells resulted in
formation of filopodia and lamellipodia, respectively [70].
Similar structures have been induced by injection of
the C3 transferase [70], which abolishes RhoA-mediated
functions such as neurite retraction [71]. Very recently,
a yeast two-hybrid screen revealed two novel proteins
that regulate RhoA-mediated control of contractility and
neuronal morphology: a putative Rho-specific GDP/GTP
exchange factor and a protein called p116Rip, which
acts as a negative regulator of RhoA signaling [72•]. In
summary, it appears that in growth cones, Cdc42 and
Rac1 are involved in filopodia and lamellipodia formation,
respectively, as initially demonstrated in fibroblasts [55],
whereas RhoA may be involved in myosin contractility
(Figure 3). In addition, Rac1 has been implicated in
collapsin-1-mediated growth cone collapse [73].

At the systems level, analysis of Purkinje cells in
transgenic mice expressing a constitutively active form of
human Rac1 revealed a reduced number of presynaptic
terminals and an increased number of dendritic spines,
whereas dendritic tree morphology was not affected [74•].
These results suggest that different neuronal compart-
ments are differentially affected by Rac1. Very recently,
Threadgill et al. [75•] demonstrated that all three GTPases
play a role in dendritic development of cortical neurons in
vitro. Expression of dominant-negative mutants either of
Rac or Cdc42 or of C3 transferase caused a reduction in the
number of dendrites, whereas expression of constitutively
active mutants led to an increased number of dendrites.
Although several downstream effectors of Rho family
proteins (such as Pak and WASP) have been identified
in non-neuronal cells, their functions, as well as those of
upstream regulators (Figure 3), in growth cones have not
been established [69] — future work in this area should be
illuminating.

Conclusions
It has become clear over the past years that growth cones
are efficient devices for relaying information between
extracellular substrates and intracellular motility machin-
ery. Studies on the actin-based motility of intracellular
pathogens suggest a number of proteins potentially
related to regulation of actin dynamics in growth cones.
Recent work in the integrin field and emerging Ig
CAM studies provide strong support for a mechanism
of substrate–cytoskeletal coupling. Cell surface receptors

from different structural families may regulate directed
growth cone movement by modulation of cytoskeletal
coupling efficiency. In addition, an increasing number of
receptor- and cytoskeleton-associated signaling pathways
in growth cones and non-neuronal cells have been
identified. In order to formulate molecular mechanisms
for growth cone guidance, a future challenge will be to
determine how these signaling pathways interact with
each other and regulate proteins involved in cytoskeletal
remodeling and motility.
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